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Introduction
Natural convection heat transfer from a vertical plate embedded in a fluid
saturated porous medium is of great practical importance in many branches of
engineering. Applications include petroleum and geothermal industries, the
storage of radioactive nuclear materials, ground water pollution, etc. In a
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A = aspect ratio of the numerical domain, H/L
a,b,c = constants, equation (8) 
cp = specific heat 
f = nondimensional stream function, 

equation (16) 
g = acceleration due to gravity 
H = height of the numerical domain 
k = thermal conductivity of the saturated

porous medium ——
K = flow permeability tensor, defined in

equation (4) 
K1, K2 = flow permeability along the principal 

axes 
K* = permeability ratio, K1/K2
L = thickness of the numerical domain 
Nux

= local Nusselt number, equation (26) 
p = pressure 
q = uniform wall heat flux 
RH = Rayleigh number, K1 gβ∆TH/αν
Rx = local Rayleigh number, K1gβ(Tw – T∞)x/αν
t = time 
T = temperature 
∆T = characteristic temperature difference 
V
→

= seepage velocity 
u,v = velocity components in x and y directions 
x,y = cartesian co-ordinates 

Greek symbols
α = thermal diffusivity 
β = coefficient of thermal expansion of the 

fluid 
θ = inclination of the principal axes 
η = similarity variable, equation (18) 
Φ = dimensionless temperature 
µ = dynamic viscosity of the fluid 
ν = kinematic viscosity of the fluid 
ρ = density of the fluid 
(ρcp)f = heat capacity of the fluid 
(ρcp)p = heat capacity of the saturated porous 

medium 
λ = exponent in the variation of plate 

temperature 
σ = heat capacity ratio, (ρcp)p/(ρcp)f
ψ = stream function 

Superscripts
* = dimensionless quantities, equation (32) 
' = partial derivative with respect to η

Subscripts
ω = vertical boundary (wall) 
∞ = distance far from the vertical 

boundary

Nomenclature

Note: The symbols defined above are subject to alteration on occasion
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review article, Cheng (1978) has discussed various works done in this field as
applied to geothermal systems.

Cheng and Minkowycz (1977) treated buoyancy induced flows over a semi-
infinite flat plate in a porous medium. Under the boundary-layer and Darcy's
approximations, similarity solutions were obtained for the case of a surface
with prescribed wall temperature. A systematic analysis, regarding the
possibility of similarity solutions for various wall temperature functions, was
undertaken by Johnson and Cheng (1978). Seetharamu and Dutta (1990)
considered the problem of a vertical plate with wall temperature varying as an
arbitrary function of the distance from the origin. Nakayama and Koyama
(1987) used an integral procedure for the analysis of free convection from a
vertical heated surface in a thermally stratified porous medium. Effects of the
thermal stratification on local heat transfer rates was discussed. A finite
element analysis of convection past a vertical surface embedded in a porous
medium was performed by Rajamani et al. (1990). In their study, the restriction
of the boundary-layer assumption was relaxed. The transient free convection
flow in a saturated porous medium near a vertical flat impermeable surface
which is suddenly cooled to the same temperature as the ambient fluid has been
considered by Ingham et al. (1982). Analytical solutions for small and large time
were derived by these authors.

A few studies have also been reported for the case of a vertical plate on which
the variation of heat flux is specified instead of the wall temperature, since such
a condition is encountered in some practical applications. Free convection from
a vertical plate with uniform heat flux has been discussed by Cheng (1977). The
problem was reconsidered by Dutta and Seetharamu (1987, 1993) for a heat flux
varying as power function from the origin as well as for a non-uniform heat
flux. Several investigations have been undertaken to take into account the
boundary and inertia effects, not included in Darcy’s model, which may become
important in high permeability media. Evans and Plumb (1978) and Hsu and
Cheng (1985) studied the boundary friction effect on heat transfer based on
Brinkman’s equation. Plumb and Huenefeld (1981), Bejan and Poulikakos (1984)
used Forschheimer’s equation to account for the influence of a quadratic drag on
natural convection over a vertical surface. Hong et al. (1985) and Seetharamu et
al. (1994) considered both the boundary and inertia effects as well as the
convective term in their model to investigate the significance of these effects on
natural convection in a high-porosity medium. Kaviany and Mittal (1987)
studied both analytically and experimentally the heat transfer rate from an
isothermal vertical plate placed next to a high permeability porous medium. It
was demonstrated by these investigators that both the boundary and inertia
effects decrease the heat transfer rate.

In all the above studies the porous media were assumed to be isotropic
whereas, in several applications, the porous materials are anisotropic. Despite
this fact, natural convection in such anisotropic porous media has received
relatively little attention. The effects of an anisotropic permeability on thermal
convection in a porous medium began with the investigation of Castinel and



Free convection
along a vertical

heated plate

45

Combarnous (1974), concerning the onset of motion in a horizontal layer heated
from below, and continued with the works of Epherre (1975), Kvernvold and
Tyvand (1979) and Nilsen and Storesletten (1990). Natural convection within
enclosures heated from the side was investigated by Kimura et al. (1993) and Ni
and Beckermann (1991), for the case when one of the principal axes of
anisotropy of permeability is aligned with gravity and by Zhang (1993), Degan
et al. (1995) and Degan and Vasseur (1996) when the principal axes are inclined
with respect to gravity. It was demonstrated by these authors that the effects of
the anisotropy considerably modify the convective heat transfer. Recently, the
effects of anisotropy on the boundary-layer free convection over an
impermeable vertical plate, for the case when one of the principal axes of
anisotropy is along the plate, were investigated by Ene (1991), using the method
of integral relations. It was concluded that, if the permeability in the direction
normal to the plate is greater than the permeability along the plate, then there
is an increase in the temperature field.

The present work is devoted to the study of natural convection over a vertical
heated plate adjacent to a porous medium. This latter is anisotropic in
permeability with its principal axes oriented in a direction that is oblique to the
gravity vector. Within the framework of boundary-layer approximations,
similarity solutions are obtained for the case where wall temperature varies as
a power function of distance from the leading edge. The full governing
equations are solved numerically, using a finite-difference procedure. Effects of
governing parameters, namely the Rayleigh number R, the permeability ratio
K* and the angular position θ of the principal axes on local heat transfer rates
are discussed.

Mathematical formulation
We consider the problem of steady heating of a vertical flat plate embedded in a
saturated porous medium characterized by an anisotropic permeability. The x
and y axes are aligned with the vertical and the horizontal respectively as
shown in Figure 1a. The permeabilities along the two principal axes of the
porous matrix are denoted by K1 and K2. The anisotropy of the porous medium
is characterized by the anisotropy ratio K* = K1/K2 and the orientation angle θ,
defined as the angle between the horizontal direction and the principal axis
with permeability K2.

The convective fluid and the porous medium are assumed to be everywhere
in local thermodynamic equilibrium. The thermophysical properties of the fluid
are taken constant, except for the density in the buoyancy term in the
momentum equation. Under these assumptions, the Darcy system of equations
describing the convective, laminar, two-dimensional, incompressible flow in an
anisotropic porous medium can be written as follows (Bear, 1972)

(1)
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(2)

(3)

where V
→

is the Darcian velocity, ρ the density, µ the viscosity, p the pressure, T
the temperature, t the time, g→ the gravitational acceleration, σ the heat capacity
ratio of the fluid-filled porous medium to that of the fluid and α the equivalent
thermal diffusivity of the porous medium. The second-order permeability
tensor 

——
K is defined as

(4)

Introducing the Boussinesq approximation 

(5)

where β is the thermal expansion coefficient of the fluid and ρ0 and T0 are the
density and temperature of the fluid at a reference condition and eliminating the

Figure 1.
(a) Physical model and
co-ordinates; (b)
numerical domain

x,u

Tw

O Oy,v

g

(a) (b)

T∞ T = T∞

T = Tw
or

q = cte

H
X

T = T∞ L y

K1 K2

θ

∂2T
             = 0

∂x2

δ

ANISOTROPIC
POROUS
MEDIUM



Free convection
along a vertical

heated plate

47

pressure term in the momentum equation in the usual way, the governing
equations become

(6)

(7)

where 

In the above equations ψ is the stream function related to the velocity
components by

(9)

such that the continuity equation (1) is automatically satisfied.
In the following sections the above equations will be solved both analytically,

under the boundary-layer approximations, and numerically, considering the full
set of governing equations. The boundary conditions pertinent to each of those
two situations will then be specified.

Boundary-layer solution
The boundary-layer problem is considered first. From the momentum equation
(6) it is clear that a boundary-layer regime is possible only when the second and
the third terms, on the left-hand side of the equation, can be neglected when
compared with the first one, i.e. when the conditions a aψyy >> bψxy and aψyy >>
cψxx are satisfied. Taking δ as the thickness of the boundary-layer and
assuming that x ~ H, y ~ δ, ψ ~ αH/δ and T ~ 1, see for instance Ene and
Polisevski (1987), it follows that the conditions

(10)

and

(11)

must be satisfied.

(8)
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Equations (10) and (11) indicate that, if a/b = O(1) and a/c = O(δ/H), the
boundary-layer hypothesis can be used. However, if a/b = O(δ/H) and a/c =
O(δ2/H2), then the terms on the left hand side of equation (6) are of the same
order of magnitude and the boundary-layer approximations cannot be involved.

In the boundary-layer regime, i.e. when conditions (10) and (11) are satisfied,
it can be readily demonstrated that equations (6) and (7), for a steady state
regime, reduce to

(12)

(13)

For the co-ordinate system shown in Figure 1a the boundary conditions
prevailing on the wall and at great distance from the wall are

(14)

(15)

where the prescribed wall temperature Tw is a power function of distance x, C
is a constant and T∞ is the temperature in the porous medium far away from the
wall.

We now introduce the following transformations

(16)

(17)

(18)

where

(19)

is the local Rayleigh number while η is the similarity parameter. The
substitution of equations (16)-(18) into equations (12) and (13) yields
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(20)

(21)

with the boundary conditions given by

(22)

(23)

The primes in the above equations denote the derivatives with respect to η. In
terms of the similarity variable η, the seepage velocity components are

(24)

(25)

The local Nusselt number Nux is defined as

(26)

where h = q/(Tw – T∞) is the local heat transfer coefficient and q = –k (∂T/∂y)y = 0
the local surface heat flux at the heated plate. In terms of the similarity
parameters, equations (16)-(18), it is readily found that

(27)

Equations (20) and (21), subjected to boundary conditions (22) and (23), are
similar to those obtained by Cheng and Minkowycz (1977) while studying free
convection about a vertical plate embedded in an isotropic porous medium (K*

= 1). Integration of these equations were performed by these authors, for
different values of λ, using a standard numerical procedure. Of special interest
for the present study are the results [–Φ'(0)] = 0.444 and [–Φ'(0)] = 0.6788, in
equation (27), obtained for the case of an isothermal surface (λ = 0) and a
constant flux surface (λ = 1/3) respectively.

The size of the porous layer δ, where the effect of the presence of wall is felt,
can now be estimated. Let ηδ be the value at the edge of the boundary-layer, i.e.
at y = δ, where Φ is equal to 0.01 it is found from equation (18) that
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(28)

where, according to Cheng and Minkowycz (1977), ηδ = 6.31 and 5.50 for the
case of an isothermal and a constant flux surface respectively. Thus, the
conditions for the validity of the present boundary-layer solution can be
estimated from equations (10), (11) and (28).

Numerical procedure
The numerical simulations in this study were performed based on the complete
form of the governing equations. In dimensionless form, equations (6) and (7)
can be rewritten as

(29)

(30)

where 

(31)

is the Rayleigh number based on the height H of the heated plate.
The nondimensionalization was carried out according to the following

definitions

(32)

where ∆T is a characteristic temperature difference which depends on the
thermal boundary conditions applied on the plate. Thus, when the plate is
maintained at a constant temperature Tw, ∆T = Tw – T∞ while, when the plate
is heated by a uniform heat flux q (per unit area), ∆T = qH/k. Both cases will be
considered in the numerical simulations.

Following Mahajan and Angirasa (1993), the dimensionless boundary
conditions applied on the computational domain shown in Figure 1b are
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where A = L/H is the aspect ratio of the rectangular numerical domain. The
imposition of a second-order derivative on the temperature at x* = 1, equation
(33), is similar to the approach used in the past by Yücel et al. (1993).

The local Nusselt number, based on the height of the plate, is given,
according to equation (26), by NuH = hH/k. It follows that, in the case of a plate
maintained at a constant temperature, one obtains

(34)

while for the case of a plate heated by a constant heat flux the local Nusselt
number is given by

(35)

where T*
w(x*) is the local dimensionless temperature of the wall.

The energy equation (30) was solved numerically using the well-known
alternating direction implicit (ADI) scheme of Peaceman (Roache, 1982). The
temporal and spatial derivatives are approximated by first and second-order
discretizations respectively. A successive over relaxation (SOR) method was
employed for the solution of the stream function (29). The following criteria
were used to check convergence of all variables at all nodal points

(36)

(33)
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where Ω is T and ψ, i and j refer to space and Γ is a constant, usually set to 
10–4 or less. A second-order forward and backward discretization is carried out
to approximate the hydrodynamic and thermal boundary conditions imposed
on the physical domain.

Based on several trial cases the aspect ratio of the computational domain was
chosen to be A = 0.25. This value was estimated from the similarity solutions
and it was verified that higher values did not alter the solution significantly. For
the present work, uniform mesh sizes have been used for both x– and y–
directions. A grid field of (40 × 60) was used for most of the calculations
reported in this study. In the cases where a very thin boundary-layer along the
heated plate was observed, the grid fineness was improved up to 100 × 120.
Typical values of the time steps range from 10–3 to 5 × 10–5.

Results and discussion
The isotropic porous medium
To test the validity of the algorithm, the numerical results were first compared
with the boundary-layer solution of Cheng and Minkowycz (1977) for the case of
an isotropic porous medium (K* = 1).

The local Nusselt number Nuz/(Rx) 1/2 is plotted in Figure 2a as a function of
the Rayleigh number RH, based on the height of the plate. The symbols
represent the results of numerical solution, obtained at mid-height of the plate
(x* = 0.5), both for the case of a wall heated isothermally and by a uniform flux.
The analytical results Nux/(Rx) 1/2 = 0.444 (isothermal) and 0.678 (constant flux),
predicted by Cheng and Minkowycz (1977) on the basis of the boundary-layer
approximations, are also indicated on the graph for comparison. For very large
values of RH, i.e. in the boundary-layer regime, the agreement between the
analytical and the numerical results is observed to be excellent. On decreasing
RH it is seen that the boundary-layer regime can be maintained up to a given
Rayleigh number under which the heat transfer rate predicted by Cheng and
Minkowycz’s similarity solution becomes invalid. The breakdown of the
boundary-layer approximation occurs at RH ~– 102 for the plate heated
isothermally and RH ~– 103 for the plate with uniform heat flux. As RH is further
reduced the local Nusselt number Nux decreases steadily (Nux/(Rx)1/2 increases)
since the strength of the convective flow along the flat plate becomes weaker. It
is well know that the similarity character of the boundary-layer equations
describing natural convection over a vertical plate is applicable only far from
the leading edge. This point is illustrated in Figure 2b where the local Nusselt
number Nux is plotted as a function of x*, the dimensionless position along the
vertical plate. The numerical results were obtained for RH = 103 and 2 ×103 for
which a boundary-layer regime prevails. The parameter Nux/(Rx)1/2 is observed
to increase from zero at the origin of the space co-ordinates (x* = 0), up to a
maximum value located near the leading edge of the plate, and then decreases
monotonously towards the constant values reported by Cheng and Minkowycz
(1977). The similarity solutions are seen to be valid at a distance x* ~– 0.2 for an
isothermal plate and x* ~– 0.4 for a uniform heat flux surface. For this reason, in
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Figure 2.
(a) Variation of

Nux/(Rx)1/2 versus x*;
(b) variation of

Nux/(Rx)1/2 at 
mid-height of the plate

versus RH. 
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the following section, the analytical solutions concerning the anisotropic porous
medium are compared with the numerical results obtained at the arbitrary
position x* ~– 0.5  Such a distance is far enough from the leading edge to insure
the similarity character of the boundary-layer solution.

Figure 3 shows the dimensionless temperature Φ and velocity distribution f ′,
at mid-height of the plate (x* = 0.5), versus the similarity variable η . The
computed values obtained for RH = 3 × 103 and 5 × 103 are seen to be in good
agreement with the similarity solutions of Cheng and Minkowycz (1977), the
maximum difference between the two solutions being less than about 1.5 per
cent. Having gained confidence in the validity of the numerical code, this latter
will be now used to investigate the effects of anisotropy in permeability on the
present problem.

The anisotropic porous medium
In this section the effects of the permeability ratio K* and the angular position
θ of the principle axes, on the free convection over a vertical plate, will be
discussed both for the isothermal and the constant heat flux situations.

Figure 4a-c shows typical numerical results illustrating the effects of the
orientation angle θ on the streamlines (left) and isotherms (right) along an

Figure 3.
Dimensionless
temperature Φ and
vertical velocity f ′
versus the similarity
variable η.
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Figure 4.
Numerical solutions for

the flow and
temperature fields for

the case of an
isothermal plate
embedded in an

anisotropic porous
medium for RH = 103,
K* = 10–2; (a) θ = 0°,

ψmax = 50.515; (b) θ =
45° ψmax = 67.864;

(c) θ = 90°,
ψmax = 526.96. 
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isothermal plate for RH = 103 and K* = 10–2 (i.e. K1 < K2). In those graphs the
increments between adjacent streamlines and isotherms are ∆ψ = ψmax/10 and
∆T = 0.1, where ψmax is the maximum value of the stream function. For
convenience, the direction and relative importance of the maximum and
minimum permeabilities are depicted by the angular position and relative
lengths of the perpendicular lines located between each set of flow and
temperature fields. The results obtained for θ = 0°, i.e. when the minimum
(maximum) permeability of the porous medium is along (perpendicular) the
plate, are depicted in Figure 4a. The fluid nearest to the plate warms up,
decreases its density and moves upwards according to Archimede’s law. The
formation of a thin boundary-layer along the plate, in which the fluid flows
essentially upwards, is clearly observed. Because of continuity the fluid outflow
from this area causes an influx of fluid from the side, which is seen to move
essentially in the horizontal direction. This flow pattern is similar to what
would be observed for the isotropic case (K* = 1). The effects of the anisotropy
orientation on the flow and temperature patterns are depicted in Figures 4b and
c for θ = 45° and 90° respectively. In general, the strength of the convective flow,
as indicated by the value of ψmax, is enhanced as the orientation of the principal
axis with higher permeability is changed from horizontal (θ = 0°) to vertical 
(θ = 90°). The anisotropy orientation θ is also observed to have an important
influence on the flow field. Thus, when θ = 45°, Figure 4b indicates that the
fluid outside the boundary-layer flows not only from the side, as in Figure 4a for
θ = 0°, but also from below the plate in the vicinity of the leading edge. This
tendency is more pronounced as the orientation anisotropy θ is increased from
45° to 90°. For this situation, the permeability in the vertical direction is much
greater than the permeability in the horizontal direction
(K2 >> K1) such that the flow is essentially channeled along the plate.

Figure 5a shows the distribution of the vertical velocity u*, at mid-height of
an isothermal plate, for a porous medium with a permeability ratio K* = 0.25
(i.e. K2 > K1) and different orientation angle θ, as predicted by the present
boundary-layer analysis. The blackened symbols in this graph are the results of
the numerical simulation, for RH = 2 × 103 and 4 × 103, which are seen to be in
good agreement with the analytical solution represented as solid lines. The
graph indicates that the velocity is maximum at the wall. This is in agreement
with the fact that the porous medium has been modeled according to Darcy's
law such that the fluid is allowed to slip on the solid boundary. It is seen from
Figure 5a that the magnitude of the vertical velocity is greatly affected by the
orientation angle θ. Thus, as expected, the velocity at the side wall is larger
(smaller) for θ = 90° (θ = 0°), i.e. when the maximum (minimum) permeability
is oriented in the direction of the boundary-layer flow along the plate. For
intermediate values of θ the velocity at the wall has a magnitude included
between these two extreme values, as exemplified by the curve for θ = 45°. The
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Figure 5.
Vertical velocity at u*, at

mid-height of an
isothermal plate, for

various values of (a) the
anisotropy ratio K*; (b)
the inclination angle θ.
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fact that the flow in an anisotropic porous medium is maximum when the
orientation of the principal axis with higher permeability is parallel to the
gravity while it is minimum when it is perpendicular to this latter has already
been reported in the past by Zhang (1993) and Degan et al. (1995) and Degan
and Vasseur (1996) for the case of natural convection within a rectangular
cavity heated differentially from the sides. The effect of the permeability ratio
K* on the velocity distribution for a porous medium with an isotropic
orientation θ = 45° is depicted in Figure 5b. The case with K* = 1 corresponds
to an isotropic porous medium as considered in the past by Cheng and
Minkowycz (1977). For a given Rayleigh number RH, i.e. a fixed value of K1, an
increase of K* corresponds to a decrease of K2 and thus of the strength of the
convective flow. Naturally, the reverse effect is observed as the value of K* is
decreased.

Figures 6a and b show the effect of the Rayleigh number RH on the local
Nusselt number Nux, at mid-height of an isothermal plate, for various values of
θ and K* = 4 and 0.25 respectively. The numerical results indicate that when RH
is large enough, in order for the flow along the plate to be in the boundary-layer
regime, the ratio Nux / [0.444(Rx /a)1/2] is equal to unity in agreement with the
prediction of the analytical solution, equation (27). The value of RH necessary to
reach this regime is seen to depend on both K* and θ. For instance, when
θ = 0°, Figures 6a and b indicate that a boundary-layer regime is reached at
about RH ~– 103 when K* = 4 and RH ~– 2 × 102 when K* = 0.25. For this
inclination angle K1 is oriented along the plate and K2 is normal to it. In the
boundary-layer regime, the flow along the vertical plate results from the
horizontal entrainment of the fluid at infinity. It is thus expected that, as the
value of K* is decreased, i.e. the permeability in the direction perpendicular to
the plate increased, the flow in the horizontal direction will be enhanced such
that a boundary-layer regime can be reached at a smaller RH. A similar
argument applies when θ = 90° for which the permeability K2 is now oriented
along the plate. For a fixed value of K1, a decrease of K* implies an increase of
K2 for which the flow along the plate is promoted such that a boundary-layer
regime occurs at a relatively lower value of RH.

In Figure 7 the local Nusselt number Nux, at mid-height of the plate, is given
as a function of θ and K* both for the case of a wall heated isothermally (solid
lines) and by a uniform flux (dashed lines). The numerical results obtained for
RH = 3 × 103 and 5 × 103 are seen to agree well with the analytical solution.
According to equation (27) it is observed that the parameter Nux /(Rx)1/2

depends on [Φ′(0)]a–1/2, where [Φ′(0))] is a constant that depends on the heating
process and a = cos2θ +K*sin2θ, i.e. on the anisotropic properties of the porous
medium, namely the permeability ratio K* and the inclination angle θ. The
particular cases θ = 0° and 90°, for which the principal axes of anisotropy are
aligned with the gravity vector, will be first discussed. When θ = 0° (a = 1),
Figure 7 indicates that the parameter Nux/(Rx)1/2 is constant, independent of the
value of the ratio of the permeabilities K*. For this situation the local heat
transfer, in the boundary-layer regime, depends solely on the Rayleigh number
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Figure 6.
Variation of the local

Nusselt number Nux, at
mid-height of an

isothermal plate versus
RH for  (a) K* = 4;

(b) K* = 0.25
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Rx based on the permeability K1 along the plate, and is not affected by the
magnitude of the permeability K2 in the direction normal to it. Naturally, as
illustrated in Figure 6, the minimum Rayleigh number necessary to reach a
boundary-layer flow regime along the flat plate does depend on K2. For
θ = 90° (a = K*) the permeability K2 is now aligned along the plate while the
permeability K1 is in a direction orthogonal to it. According to Figure 7, the
resulting local Nusselt number depends strongly on the permeability ratio K*.
This trend follows from the fact that Rx, which is based on K1 the permeability
now perpendicular to the plate, is not the appropriate parameter for this
situation. Thus, according to equation (27), on using a Rayleigh number Rx /a =
K2gβ∆Tx/αµ, based on the permeability K2 along the plate, the local Nusselt
number Nux becomes independent of K*. Recently, the effects of anisotropy on
the boundary-layer free convection over a vertical impermeable surface has
been investigated by Ene (1991). The governing boundary-layer equations were
solved, using the method of integral relation, for the case when the principal
axes of anisotropy are aligned with the plate. This problem, however, is

Figure 7.
Variation of the local
Nusselt number Nux, at
mid-height of the plate
versus K* for various
values of θ.
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marginal since, as discussed above, on using an appropriate normalization the
convective heat transfer can be directly deduced from the solution for an
isotropic porous situation (K* = 1). For an arbitrary orientation of the
inclination angle θ the solution depends strongly on K*. This point is illustrated
in Figure 7 for θ = 45° for which it is seen that, as the permeability ratio K* is
made larger, the value of Nux decreases. This can be explained again by the fact
that for a given Rayleigh number (i.e. a given value of K1) an increase in K*

corresponds to a decrease in K2 resulting in a weaker convection flow and heat
transfer rate.

Conclusions
A study has been made of natural convection near a semi-infinite plate
embedded in an anisotropic porous medium where the principal axes are non-
coincident with the gravity vector. Within the framework of boundary-layer
approximations similarity solutions are derived for the case of a plate heated
isothermally or by a constant heat flux. The main features of the approximate
analytical solution have been tested by a numerical solution of the full
governing equations in the range 101 ≤ RH ≤ 104, 0.1 ≤ K* ≤ 10 and 0 ≤ θ ≤ 90°.
The main conclusions of the present analysis are:

(1) The convective flow along a vertical plate embedded in an anisotropic
porous medium is considerably affected by both the permeability ratio
K* and inclination angle θ of the principal axes.

(2) When the orientation of the inclination angle is such that the principal
axis with higher permeability is parallel to the plate the strength of the
convective flow is maximum. This occurs for K*< 1 when θ = 0° and
K* >1 when θ = 90°. For this situation the boundary-layer hypothesis is
valid provided that the permeability along the plate is not considerably
greater than that in the direction normal to it.

(3) For a fixed inclination θ the heat transfer is promoted, when compared
with the isotropic situation (K* = 1), as the permeability ratio K* is made
larger than unity and reduced when it is made smaller.
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